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Abstract

Internal wave reflection from a sloping topographic boundary may lead to enhanced shear if the
topographic angle to the horizontal is close to that of the internal wave group velocity vector.
Previous analytic studies have suggested that shear enhancement is reduced at concave slopes as
compared to convex and planar slopes near the critical angle. Here the internal wave reflection from
concave and convex slopes which pass through the critical angle is investigated numerically using
the nonhydrostatic MITgcm. Overturning, shear instability and resultant mixing are examined.
Results are compared with simulations of wave reflection from planar slopes, with angles greater
than, less than and equal to the critical angle. In contrast to the analytic predictions, no reduction
in mixing is found for the concave slope as compared to the other slopes. In all cases stratification
is eroded in a band above the slope, bounded at its outer edge by the internal wave characteristic.
The difference between numerical and analytic results is caused by the nonlinearity of the numerical
calculations, where the finite amplitude flow leads to generation of upslope propagating bores for a
wide range of topographic slopes around the critical angle.

1 Introduction

Recently the tides have been reexamined as a possible source of energy for diapycnal mixing in the
ocean interior (Munk and Wunsch, 1998). Evidence from satellite altimetry indicates that as much
as 30% of tidal dissipation occurs in the open ocean (Egbert and Ray, 2000), a process previously
thought to occur almost exclusively on the continental shelf. Much recent activity has therefore
been focused on understanding where and how this open ocean component of tidal dissipation
occurs (Bell, 1975; Baines, 1982; Khatiwala, 2002; Llewellyn Smith and Young, 2002; St Laurent
and Garrett, 2002; Polzin, 2002). A particular question of interest for climate studies is how
much of the tidal energy is converted into potential energy through diapycnal mixing. In deep
water, energy is transferred from the large scale barotropic tide to small turbulent mixing scales
through a series of stages. First baroclinic motions are generated by the barotropic tidal flow over
topography. Baroclinic energy is then transferred to smaller scales, leading to wavebreaking and
mixing, through nonlinear wave-wave interactions or further interactions with topography. In this
study we examine only one of these stages - the mixing which results when baroclinic internal tides
reflect from sloping topography. A scenario which seems particularly likely to lead to mixing is the
reflection of an internal wave from a slope with the same angle to the horizontal θc as the internal
wave characteristic

tanθc =
k

m
=

(

ω2 − f 2

N2 − ω2

)1/2

= s (1)

where k is the horizontal wavenumber, m is the vertical wavenumber, N is the buoyancy frequency, f
is the Coriolis frequency, and ω is the wave frequency (equal to the tidal frequency for internal tides),
and θc is known as the critical angle. Internal waves preserve their angle to the horizontal upon
reflection, so that reflection from slopes near the critical angle given above lead to reflected waves
with higher wavenumbers and greater shear (Eriksen, 1982; Wunsch, 1969). Numerical simulations
(Slinn and Riley, 1996) and laboratory experiments (Cacchione and Wunsch, 1974; Ivey and Nokes,
1989) of internal wave reflection from a planar slope at the critical angle have shown mixing near
the slope.

In the real ocean a slope is more likely to pass through the critical angle at a point rather than
over an extended region. The consequences of a non-uniform slope for internal wave reflection must
therefore be considered. A typical steep continental slope has at least two critical points, see figure
1a. Around a critical point, the slope may be either concave or convex, where a concave slope has
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Figure 1: Schematics of continental slopes, showing the location of the 2 critical points (where
θ = θc). (a) A generic continental slope with a convex critical point at top, and a concave critical
point below, (b) a “convex” slope, where most of the slope is convex around a midlevel critical
point, and (c) a “concave” slope, where most of the slope is concave around a midlevel critical
point.
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θ < θc for h < hc, and θ > θc for h > hc and vice versa for convex slopes (hc is the topographic
height at the critical point) (See figure 1). The continental slope in figure 1a has both a convex
region and a concave region. In an analytical study, Gilbert and Garrett (1989) predicted that
reflection from concave slopes near the critical angle will not give rise to the same enhanced shear
and mixing as planar and convex slopes, because reflected waves from above and below the critical
point will destructively interfere, a conclusion also reached by Muller and Liu (2000a,b) in a study
of wave scattering from finite amplitude topography. No laboratory or fully nonlinear numerical
studies have yet confirmed these predictions. (Cacchione et al (2002) suggest that the interaction
between the internal waves and sediment tends to favor formation of slopes at the critical angle,
but we will only consider rigid slopes here).

Here we examine numerical simulations of internal wave reflection from variable continental
slopes close to the critical angle, in particular comparing planar, convex and concave slopes. We
focus on the curvature over most of the slope. (A ”convex” slope will have a narrow concave region
at the base of the slope (figure 1b), while a ”concave” slope will have a narrow convex region at the
top of the slope (figure 1c)). We will examine whether the Gilbert and Garrett (1989) prediction
of weaker mixing on concave slopes holds for finite amplitude flows, and for realistic continental
slopes.

Our motivation is the mixing generated by tides, so our numerical simulations focus on internal
waves at the tidal frequency. However, the wave breaking processes we examine may occur for
internal waves at any frequency between the Coriolis and buoyancy frequencies. None of our results
are dependent on the specific frequency of the incident wave.

2 Numerical Model and problem configuration

For our calculations we use the MITgcm, a versatile ocean model developed at MIT for use on
parallel computers (Marshall et al, 1997). The model integrates the incompressible Boussinesq
equations, assuming a linear equation of state:

∂u

∂t
+ u.∇u + f k̂ × u = −∇P + bk̂ + νh

(

∂2

∂x2
+

∂2

∂y2

)

u + νv
∂2

∂z2
u (2)

∇.u = 0 (3)

∂b

∂t
+ u.∇b = κ∇2b (4)

where u = (U, V, W ), the three-dimensional velocity vector, P is the density-scaled pressure, t, x,
y, and z are the time and space coordinates, and b is the buoyancy. νh and νv are the horizontal
and vertical viscosity constants, and κ is the tracer diffusivity. k̂ is the unit vector in the vertical
direction.

Most of our calculations make use of the model’s nonhydrostatic capability, allowing us to
explicitly simulate shear instability and overturning processes. We use sufficiently high resolution
to explicitly resolve the mixing processes due to Kelvin-Helmholz instability and do not employ a
sophisticated subgridscale mixing scheme: constant eddy viscosities are used instead, with values
of νh = 10−2m/s2 and νz = 10−3m/s2. The model employs a direct discretization method with flux
limiting for tracers (Pietzrak, 1998), preventing the appearance of spurious oscillations in the tracer
field and introducing diffusivity where needed for stability. Consequently we can set the explicit
diffusivity to zero, i.e. κ = 0, so the stratification is not eroded in the absence of flow. However
our simulations are not analogous to infinite Prandtl number (where Pr = ν/κ) since in regions of
small scale structure the implicit numerical diffusivity is finite (but variable).

The MIT model represents topography through a finite volume formulation, allowing arbitrarily
small increments in topographic height (to within limits set by the CFL criterion) (Adcroft et al,
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1997). All of our calculations in this study are 2-dimensional, with topography consisting of a flat
bottom in the left hand side of the domain, a sloping region to the right, and finally a continental
shelf region to the far right. Initial conditions consist of a stable, horizontally uniform stratification,
and no flow:

b(t = 0) = N 2z ; U(t = 0) = V (t = 0) = W (t = 0) = 0 (5)

where N is the uniform buoyancy frequency.
The boundary conditions for b are no-flux at top and bottom. Since κ = 0 this does not lead to

an erosion of the initial stratification in the absence of flow. Boundary conditions for the velocity
fields are no-slip at the bottom topography (i.e. ut = 0 where ut is the velocity parallel to the
topography), and no-stress at the surface (∂u/∂z = ∂v/∂z = 0). There is no flow normal to the
topography, while at the surface a linear free surface condition is applied, so that wz=0 = ∂η/∂t
where η is the free surface height.

At the offshore boundary an internal wave is forced by specifying oscillating velocities and
buoyancy anomalies which satisfy the internal wave equations,

U(0, z, t) = U0cos(mz)sin(ωt) (6)

V (0, z, t) = U0

f

ω
cos(mz)cos(ωt) (7)

b(0, z, t) = N 2z + U0N

(

ω2 − f 2

ω2

)1/2

sin(mz)sin(ωt) (8)

W (0, z, t) = −U0

(

ω2 − f 2

N2 − ω2

)1/2

sin(mz)cos(ωt) (9)

where ω is the forcing frequency, m is the vertical wavenumber appropriate to a mode 1 internal
wave: m = π/H. U0 is the velocity amplitude of the forcing, and U is the velocity in the x-direction
(toward the slope), V is the velocity in the y-direction (along the slope), W is the vertical velocity.

These anomalies forced at the boundary lead to a onshore-propagating internal wave of the form

U(x, z, t) = −U0cos(mz)sin(kx − ωt) (10)

where k is given from the dispersion relation in equation 1. The oscillation frequency is set to the
M2 tidal frequency: ω = 1.41× 10−4s−1. Since we include the coriolis frequency in our calculations
the along slope velocity component (V) of an internal wave propagating normal to the slope is
nonzero, and is a quarter period out of phase with the velocity in the cross-slope direction (U). We
ramp up the boundary forcing slowly over one tidal period, to avoid transients caused by impulsively
switching on the forcing.

These boundary conditions do not allow internal waves reflected from the topography to radiate
out of the domain. Hence after such time that internal waves might reflect from the topography and
be re-reflected at the boundary back into the domain, we can no longer be assured of an internal
wave of the pure form given above propagating toward the slope. It may be possible to deal with this
problem by separating the flow near the boundary into the incoming and outgoing wave components
and applying the Orlanski radiation condition to the outgoing component only. However, we did
not explore this possibility here, and hence focus primarily on the initial flow evolution at the slope,
before such contamination might have taken place.

Several nondimensional parameters control the behavior of internal tide-topography interactions.
The first is the ratio of the topographic slope to the wave characteristic slope:

α =
dh/dx

((ω2 − f 2)/(N2 − ω2)1/2
(11)
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where if α < 1 the topography is subcritical, if α = 1 the slope is critical and if α > 1 the
topography is supercritical. As described in the previous section our focus is on topography where
α = 1 somewhere. Concave slopes have α > 1 above the critical point and α < 1 below the critical
point and vice versa for convex slopes.

A second nondimensional parameter describes the nonlinearity of the flow in terms of a wave
Froude number:

Fr = U0/cp (12)

where U0 is the amplitude of the internal tide horizontal velocity, and cp is the horizontal component
of the phase velocity of the wave. In all our calculations Fr is small for the boundary forced wave,
which behaves like a linear internal wave. However, both the internal tide velocity and the phase
velocity are modified upon reflection from topography, so Fr may increase significantly.

All our experiments have uniform stratification N 2 = 1 × 10−6s−2, Coriolis frequency f =
10−4s−1, and internal wave amplitude U0 = 0.024m/s, and gravest vertical mode m = π/H, where
H is the depth of the fluid. The domain size is Lx × Lz = 13.3km × 200m, with resolution
nx × nz = 640× 60. x therefore varies from x = 0 to x = 13.3km. The resolution is nonuniform in
the x direction, with most grid points concentrated over the sloping topography, where ∆x = 7.2m,
and ∆z = 3.333m. At the left hand boundary, x = 0 where the wave is forced, the fluid has a depth
of 200m, with flat bottomed topography. At x = 2.5km the slope begins. The 40m depth flat shelf
begins at x = 4.08km for most calculations The large extent of the shelf (from x = 4.084km to
x = 13.3km) ensures that the slope processes are not influenced by the onshore boundary, where
Orlanski radiation conditions are applied. N has been chosen to give a horizontal wavelength which
is not too large compared to the vertical depth, thereby minimizing the disparity in vertical and
horizontal resolution.

A third important parameter regarding the slope is the ratio of lengthscales λx/Lh where λx is
the horizontal wavelength of the wave, and Lh is the horizontal lengthscale of the slope. For our
simulations with a mode 1 internal wave, λx = 3.96km, and for the critical slope from h = −200m
to h = −40m, λx/Lh = 2.5. The slope therefore occupies a little less than half an incoming wave
wavelength.

We examine 5 different slopes. The first, a linear slope (hereafter referred to as Planar), has
slope equal to that of the wave characteristic: dh/dx = s = 0.101 for our choice of N, ω and f .
Two other slopes are concave (Concave) and convex (Convex) about the mid point of the slope,
with the slope beginning and ending at the same location as the linear slope, and with critical slope
half way up the slope, at z = −120m. (Note that the ”convex” slope has a concave corner at the
base of the slope, and the ”concave” slope has a convex corner at the top of the slope). Then we
include a linear subcritical slope, with dh/dx = 0.06 (Subcrit) and a linear supercritical slope, with
dh/dx = 0.142 (Supercrit).

We also repeat the linear critical slope calculation using a hydrostatic version of the MIT model
(Hydstat), with implicit convective adjustment (large vertical diffusivity in statically unstable re-
gions) to parameterize vertical mixing. In the hydrostatic calculations horizontal viscosity had to be
increased by an order of magnitude relative to the nonhydrostatic calculations to ensure stability,
so that νh = 10−1m/s2 (νv is unchanged). To ensure a clean comparison we therefore also include a
nonhydrostatic calculation with the higher value of horizontal viscosity (Highvisc), but with vertical
mixing explicitly resolved. We therefore consider a total of 7 calculations. Each calculation is run
for a total of 18 M2 tidal periods. A quasi-steady state is achieved after about 4 M2 tidal periods.

The Reynolds number is given by Re = UL/ν, where U = U0 and ν = νh. L is an advective
lengthscale, which for the waves can be estimated as U0/ω = 170m. Then Re = 200 for most
calculations, or Re = 20 for the high viscosity calculations. Of course the Reynolds number is
modified on reflection, as the wave amplitude changes.

Final governing nondimensional parameters are the off-normal oblique angle of incidence of the
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wave, which is held at zero in this study, and the Rossby number Ro = U/(fL). On the advection
scale Ro = 1.4, while on the wavelength scale Ro = 0.06: rotation is important for the wave motion,
but may not influence the advective motions associated with mixing.

3 Results

3.1 Qualitative features

To illustrate the qualitative features of the flow when the internal wave reflects from the slope, we
show two snapshots, one at t = 5.39T (figure 2) and the other at t = 5.94T (figure 3) after the
beginning of the calculation, for each of the 7 cases. T is the internal wave period, equal to the M2
tidal period. At t = 5.39T there is a bore clearly visible in all calculations, located somewhere on
the lower to middle part of the slope. The bore consists of a sharp, almost vertical density front
adjacent to the slope, separating dense fluid advected up the slope from the less dense fluid into
which it is moving. Similar bore-like features have been noted in earlier laboratory studies (Ivey
and Nokes, 1989) and numerical simulations (Slinn and Riley, 1996). Analytical studies of finite
amplitude internal wave reflection from near-critical planar slopes predict the symmetry breaking
which leads to the formation of these density fronts (Thorpe, 1992; Dauxois and Young, 1999).
The bore is propagating up the slope in all cases. Vertically above the sharpest density gradients,
there is a region of overturned isopycnals, characteristic of a breaking wave. This feature is seen
in all the nonhydrostatic calculations, but not in Hydstat. Instead in Hydstat statically unstable
fluid is immediately homogenized by the convective parameterization, so that vertical isopycnals
result instead. The bore is accompanied by convergent flow in the region adjacent to the slope. The
downslope flow ahead of the bore is confined to a thinner layer than the upslope flow, and therefore
leads to strong shear, resulting in instability and mixing in low viscosity calculations, but not in
Highvisc or Hydstat.

About half a forcing period later, at t = 5.94T , the bore has now moved up the slope. In most
cases, an accompanying front is seen in upper layers, this time associated with downward depression
of the isopycnals. This front, associated with convergent flow above, divergent below, is collocated
with the rear of the dense bore below and propagates toward shallow water at the same rate as the
dense bore. Behind this front, the isopycnals are relatively flat away from the slope, while at the
slope the dense fluid that has been carried up the slope is accelerating back down under gravity.
The bore in Concave is less marked than in the other cases, having disappeared in the steepest
part of the slope and is just reappearing at the shelfbreak corner. Highvisc differs from Planar

primarily in the smoothness of the flow, with less shear instability and mixing especially in the
downslope flow. The hydrostatic calculation Hydstat appears to reproduce many of the features of
the nonhydrostatic calculation Highvisc, but the fronts and bores are more extreme and shocklike.

Note that the nature of the slope - critical, supercritical, subcritical, convex, concave - appears
to have relatively little influence on the qualitative features of the flow in this particular regime. All
cases show a dense front propagating up the slope, even though the direction of the group velocity
of the reflected wave is toward shallower water for subcritical slopes and toward deeper water for
supercritical slopes.

Another view of the evolution of the flow can be obtained by examining time-depth plots of the
velocity and density fields at specified locations on the slope. We compare profiles taken in the
same depth of water (not the same distance on the x axis, because of the different topography).
Figure 4 shows cross-slope velocity profiles at water depth of 180m for 2 time periods, after a
quasi-steady state has been reached. At this depth Planar shows enhanced upslope and downslope
flow near the bottom, with upslope flow extending slightly higher into the fluid. The flow pattern
does not show upward or downward phase propagation, except perhaps for some downward phase
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(a) Planar
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Figure 2: Snapshots of cross-slope velocity (color) and buoyancy at a time t = 5.39T after the
beginning of the calculation. The color scale extends between U = −0.05m/s (blue) → U = 0.05m/s
(red) and the contour interval is ∆b = 9.81×10−6m/s−2, (where g is the gravitational acceleration).
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(a) Planar
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Figure 3: As for figure 2, but for t = 5.94T
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(a) Planar

(b) Concave (c) Convex

(d) Highvisc (e) Hydstat

(f) Subcrit (g) Supercrit

Figure 4: Time-depth plots of cross-slope velocity U at a location where the topographic height
h = −180m. Contour spacing is ∆U = 0.005m/s.
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(a) h = −180m (b) h = −80m
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Figure 5: Profiles of the root mean square cross-slope velocity as a function of height for topographic
depth (a) h = −180m and (b) h = −80m, for planar (blue), concave (red), convex ( green),
subcritical (black) and supercritical (magenta) slopes.
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Figure 6: Profiles of the skewness of the time-derivative of cross-slope velocity as a function of
height for topographic depth (a) h = −180m and (b) h = −80, for planar (blue), concave (red),
convex ( green), subcritical (black) and supercritical (magenta) slopes.
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propagation visible in the upslope flow at about z = −130m, and slight upward phase propagation
below. The Concave, Highvisc, Hydstat and Subcrit cases are all qualitatively similar to planar at
this depth (note that Concave has subcritical slope at this depth). However, Convex and Supercrit

show a local maximum in the upslope flow at about z = −120m → −130m, displaced above
the bottom, and upward phase propagation is pronounced especially in Supercrit. Upward phase
propagation indicates downward energy propagation, which would be expected for a wave reflected
from a supercritical slope. The bore snapshots (figure 2) show that the upslope velocity in the
bore, rather than being aligned with the topography on a supercritical slope, is aligned along the
wave characteristic slope, and hence displaced slightly above the slope. In the convex case which
is supercritical in water depth of d = −180m, the maximum upslope velocity at z = −120m is
therefore the extension of the upslope flow above the critical point at d = −120m. We can quantify
these differences in the velocity time-depth plots by examining the profiles of root mean square
velocity, shown for all calculations in figure 5a, which all show a similar shape, dominated by the
gravest vertical mode, but with small local maxima for Convex and Supercrit at mid-depths. (To
avoid crowding we omit the profiles for Hydstat and Highvisc, but these are very similar to Planar.)
The skewness of the time derivative of U (figure 6a) shows that, for all cases, the flow changes
suddenly from downslope to upslope (positive skewness), signifying the passage of the convergence
zone associated with the bore on the slope.

The buoyancy time-depth plots at this location on the slope, d = −180m (figure 7) all show
dense fluid displaced up slope, with strongest density fronts in Convex and Supercrit and weakest
in Concave and Subcrit. This is quantified in the root mean square buoyancy profiles (figure 9a);
near the boundary, Convex and Supercrit have the largest values of brms, and Concave and Subcrit

the smallest, while at upper levels Concave has the greatest brms. The passage of the bore, with
sudden changes from less dense to denser fluid is shown by the negative skewness in all cases for
db/dt (figure 10a). This skewness is predicted by weakly nonlinear analytical studies (Thorpe,
1992; Dauxois and Young, 1999). Similar magnitude negative skewness of the temperature time
derivative has been observed near topography by Thorpe et al (1991), who propose fronts generated
by reflecting internal waves as the likely cause.

Higher up the slope, at d = −80m (figure 8), most cases show both upper and lower level density
fronts, with sudden increases in density at the topography, followed by sudden decreases in density
in upper layers. The exception is Concave which shows more symmetrical changes in density. This
is quantified by the skewness of the time derivative of buoyancy, which is negative near the bottom
boundary (passage of a dense front) for all cases (figure 10b), except Concave, which has skewness
close to zero. Concave does however have significantly larger brms at this fluid depth than the others
(figure 9b). At this depth the cross slope velocity signal is less coherent (as shown by the skewness
of the time-derivative, which does not show any identifiable pattern, figure 6b) and Urms is similar
for all cases (figure 5b).

Our calculations therefore show that there is a similarity between all calculations when the slope
is subcritical or critical. Even when the slope is supercritical many of the same qualitative features
may be found, with a bore propagating up the slope. However the upslope flow is aligned along the
wave characteristic, displacing it off the slope behind the bore in the supercritical cases (Supercrit

and Convex below d = −120m). Near the top of the concave slope qualitatively different behavior
is found. When the bore reaches this steep slope (steeper than Supercrit), the motion is forced to
become more vertical, leading to large amplitude but symmetric buoyancy oscillations, rather than
the asymmetric bores seen on the other slopes.

3.2 Net changes in stratification

Having demonstrated that qualitative differences in the flow are confined locally to the regions of
steep supercritical slope, we now consider how the slope curvature affects the mixing, indicated by
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(a) Planar
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Figure 7: Time-depth plots of buoyancy b at a location where the topographic height h = −180m.
Contour spacing is ∆b = 9.81 × 10−6m/s2.
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(a) Planar

(b) Concave (c) Convex

(d) Highvisc (e) Hydstat

(f) Subcrit (g) Supercrit

Figure 8: As for figure 7 but for a location where the topographic height h = −80m
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Figure 9: Profiles of the root mean square buoyancy as a function of height for topographic depth
(a) h = −180m and (b) h = −80m, for planar (blue), concave (red), convex ( green), subcritical
(black) and supercritical (magenta) slopes.
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Figure 10: Profiles of the skewness of the time-derivative of buoyancy as a function of height for
topographic depth (a) h = −180m and (b) h = −80m, for planar (blue), concave (red), convex (
green), subcritical (black) and supercritical (magenta) slopes.
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changes in stratification. We must bear in mind however that mixing in 2-dimensional calculations
such as these may differ from that in 3-dimensional calculations, and the real 3-dimensional ocean.
The process of wave breakdown into turbulence is known to be more efficient and rapid in 3-
dimensions, and mean alongslope currents established through the wavebreaking might significantly
modify the mixing in 3-dimensions. Nonetheless, we present the mixing diagnostics here as a
reference against which future 3-dimensional calculations can be compared, and as a qualitative
guide to the effects of slope curvature on mixing.

Figure 11 shows the net change in vertical buoyancy stratification defined as follows:

∆N2 =
∂

∂z

(

1

T

∫ t2+T

t2
bdt

)

−
∂

∂z

(

1

T

∫ t1+T

t1
bdt

)

(13)

where T is the tidal period and t1 = 2.5T and t2 = 7.5T . t1 is just before the mixing begins
and t2 is nearly halfway through the calculation. (As will be seen below, relatively little mixing
occurs in the second half of the calculation). Planar shows a broad band of reduced stratification
running parallel to the slope, bounded by increased stratification both away from the slope and in
a thin zone on the slope. In both Concave and Convex the increased stratification at the slope is
found only where the slope is subcritical, and the band of increased stratification away from the
slope is not parallel to the slope, but aligned with the wave characteristic slope. In both Concave

and Convex the mixing is less well organized near the supercritical slope. Highvisc is similar to
Planar, but with a slightly thinner band of modified stratification, less reduction in stratification
further down the slope, and more marked increase in stratification at the slope. Hydstat has less
stratification increase in the band away from the slope. There is not much mixing on the lower part
of the slope. The hydrostatic calculation therefore appears to simulate the mixing less successfully
than the propagating bores. This inability to reproduce the mixing cannot be attributed entirely
to the absence of shear instability, since this is also absent in Highvisc. Highvisc does capture
overturning in the head of the bore which Hydstat cannot. Subcrit shows similar features to Planar,
with the band of increased stratification aligned with the wave characteristic. Supercrit has many
similar features, but the zones of reduced and increased stratification appear less well organized.

The time evolution of the stratification is shown in figure 12 for the Planar, Concave, Convex,
Highvisc and Hydstat calculations, as a time-depth contour plot located near the bottom of the
slope (d = −120m). In each case the stratification change has been calculated from the density
field averaged over one tidal cycle, and there is some aliasing due to the relative infrequency with
which fields are analysed (9 times per tidal cycle).

In Planar after about 7 tidal periods, the stratification reaches an approximate steady state.
Both the weakened stratification and the increased stratification above remain at the same height
above the boundary, without any further noticeable changes. The region of increased stratification
on the slope becomes somewhat thinner and more intermittent. Similar features are seen in Concave

and Convex (and in Subcrit and Supercrit too, but not shown), but with different depths of the
”mixed” layer. Highvisc has a much thinner region of modified stratification, with a proportionately
wider region of increased stratification on the slope, and thinner and more intermittent region of
increased stratification above. Hydstat is qualitatively different from all the others, with a thick
layer of increased stratification near the slope, little decrease in stratification above, and barely any
increase in stratification above that. Hence the differences in stratification changes seen in figure
11 persist for the whole length of the integration.

For comparison the final stratification profile for all of these 5 cases is shown in figure 13. The
3 low viscosity cases (Planar, Concave, Convex) all have very similar profiles, while the Highvisc

profile has weaker anomalies confined to a shallower depth, and the Hydstat profile is completely
different to the rest, especially near the topography. The minimum stratification in Planar, although
only a small fraction of its initial value, is still nowhere near zero, and considerably greater than ω2.
Hence mixing has not ceased simply because the fluid is already completely mixed. The cessation of
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Figure 11: Snapshots of the change in buoyancy stratification over 5 tidal periods. The color scale
extends from ∆N 2 = −1.56 × 10−6s−2 (blue) → 1.56 × 10−6s−2 (red), with values close to zero in
green.
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(a) Planar

(b) Concave (c) Convex

(d) Highvisc (e) Hydstat

Figure 12: Depth-time plots of the change in stratification db/dz − db/dz(t = 0) for (a) Planar, (b)
Concave, Convex, (d) Highvisc, (e) Hydstat. Contour spacing is ∆db/dz = 2 × 10−7s−2
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Figure 13: Profiles of the change in stratification for Planar (blue), Concave (red), Convex (green),
Hydstat (black) and Highvisc (magenta) calculations at the completion of all computation.

mixing seen in these experiments may indicate that the reduction in stratification has in some way
modified the wave breaking process so that mixing no longer occurs. Another possibility is that the
incoming wave is corrupted by waves which have been successively reflected from the topography
and the offshore boundary, so reducing the internal wave signal near the slope. (This would be
expected to be a problem particularly for the concave and supercritical planar slopes, yet the end-
state for the concave case stratification is very similar to that for the planar and convex cases.)
Even if the cessation of mixing is real, and not an artifact of the offshore boundary conditions,
it is possible that in 3-dimensions a different result might be obtained - a steady state could be
established by 3-dimensional processes such as secondary circulations, baroclinic instability, lateral
eddy fluxes, etc, so the net mixing to be expected in the ocean cannot be deduced from the transient
mixing seen here.

3.3 Energy budgets and mixing efficiency

In the MIT model which has a linear free-surface representation, the kinetic energy equation is
given by

∂

∂t
K + ∇.(K +

p

ρ0

+ gη)u + ν∇2K − wb + ν∇u.∇u = 0 (14)

where K = (u.u)/2, η is the free surface elevation, b is the buoyancy, p is the pressure, and ν is
the viscosity. The term wb represents transfer between kinetic and potential energy. If we integrate
this over a volume V defined by z = −H → z = 0, and x = x1 → x2 we have

∂
∂t

∫

V KdV = −[
∫

0

−H Kudz]x=x2
x=x1 − [

∫

0

−H(p/ρ0 + gη)udz]x=x2
x=x1

1 2 3
−[
∫

0

−H ν ∂K
∂x

]x=x2
x=x1 − [

∫ x2

x1 (K + gη)wdx]z=0 +
∫

V wbdV −
∫

V ν∇u.∇udV
4 5 6 7

(15)
where (1) is the Kinetic energy tendency, (2) is the Kinetic energy advection term, (3) is the
Pressure transport term, (4) is the diffusive transport term, (5) is the transport at the top surface
(only nonzero because we do not have a rigid lid at z = 0), (6) is the potential energy conversion
term, and (7) is the dissipation term. The companion potential energy equation is

∂

∂t
Φ + ∇.Φu + wb = 0 (16)

where Φ = −zb, the potential energy. Again we integrate over a volume defined as above to obtain

∂
∂t

∫

V ΦdV = −[
∫

0

−H Φudz]x=x2
x=x1 −

∫

V wbdV
1 2 3

(17)
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Figure 14: Timeseries of the potential energy budget terms for the region over the slope for Planar.
Shown are the instantaneous Potential energy tendency (blue), the instantaneous Potential energy
transport (red) and the tidally averaged conversion to kinetic energy (green).

where (1) represents the potential energy tendency, (2) the potential energy advection and (3) the
transfer of potential energy to kinetic energy. Now we evaluate the energy budgets for the various
numerical simulations, using x1 = 2.16km and x2 = 4.34km so that the whole of the slope and
a little of the surrounding flat-bottomed regions are contained within the volume. We confine our
examination of the budgets to the region over the slope, thereby avoiding the question of the work
done by the boundary forcing. (In particular the work done by the boundary forcing may not be
constant since there may be contamination by waves re-reflected from the offshore boundary).

The potential energy tendency for Planar (figure 14) is dominated by the internal wave oscil-
lations, and largely balanced by the flux of potential energy into the region from the boundary.
(There is little flux out of the region onto the shallow slope). However, there is a finite net flux of
potential energy into the region, when averaged over a tidal cycle, which is not compensated by a
corresponding rise in potential energy, and therefore must be balanced by a transfer of potential
energy to kinetic energy. Hence the net, tidally averaged, buoyancy flux shown in figure (14) in the
region over the slope is positive. This is true for all cases except Supercrit which has a buoyancy
flux which is highly variable but averages close to zero.

In the tidally averaged kinetic energy budgets (figure 15) the pressure transport and PE con-
version term (for most cases) supply kinetic energy to the region. The kinetic energy initially rises
steeply, but thereafter reaches a quasi steady state, when dissipation balances the energy inputs by
the pressure transport and potential energy conversion. Other terms in the kinetic energy budget
are small. In most cases a quasi-steady state is reached after about 5 tidal periods, including for
Hydstat and Highvisc (not shown). However Concave shows a decline in pressure transport matched
by a decline in dissipation toward the end of the calculation, and fluctuations in kinetic energy level
which continue throughout the calculation (perhaps caused by the contamination of the incoming
wave by waves which have been successively reflected from the topography and offshore boundary).

The net positive buoyancy flux arises from the propagation of buoyancy anomalies - the incoming
wave - which then break, releasing their potential energy to kinetic energy. Some of the kinetic
energy generated during the wave breaking may be converted back to potential energy through
mixing of the basic stratification. This pathway for loss of kinetic energy cannot be quantified by
examining the total budgets. Winters and D’Asaro (1996) show that many oceanic mixing scenarios
are associated with both an adiabatic and a diabatic component of buoyancy flux, which may have
opposite signs as in this case. Here we attempt to deduce that part of the buoyancy flux which is
responsible for mixing by examining the net change in the tidally averaged buoyancy field, assuming
in the absence of diffusion or horizontal fluxes,

∂b

∂t
=

∂

∂z
< w′b′ > (18)
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Figure 15: Timeseries of the tidally averaged kinetic energy budget terms for the volume over the
slope, for (a) Planar, (b) Concave, (c) Convex, (d) Subcrit, (e) Supercrit. Highvisc and Hydstat

are not shown, but are very similar to Planar. Shown are Kinetic energy tendency (blue), pres-
sure transport (red), dissipation (black), potential energy conversion (green), advective transport
(magenta), and diffusive transport (cyan).
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This component of the buoyancy flux can be evaluated by integrating the net change in tidally
averaged buoyancy with depth. Since vertical buoyancy flux is zero near the top surface, but non
zero at the sloping topography, we start the integration from the top.

< w′b′ >t (x, z) =
∫

0

z

1

t2 − t1
[
1

T

∫ t2+T

t2
b(x, z, t)dt −

1

T

∫ t1+T

t1
b(x, z, t)dt]dz (19)

As for the stratification shown in figure 11 we use t1 = 2.5T and t2 = 7.5T , thereby concentrating
on the earlier part of the calculation during which mixing of stratification is most active. The time
averaged buoyancy flux responsible for mixing is shown as a function of x and z in figure 16. In all
cases, negative buoyancy flux (down gradient flux) is localized over the slope. In the low viscosity
cases, it is localized over the center of the slope, where both the slope is critical, and the mode
1 internal wave displacements are greatest. In Highvisc and Hydstat the buoyancy flux is higher
up the slope. This would reflect the qualitative observation that the higher viscosity cases do not
include sufficient shear instability, which tends to be the principal mechanism for mixing lower down
the slope, whereas the bore, which is represented by both Highvisc and Hydstat as well as the other
calculations, is responsible for most mixing higher up the slope. These values of down-gradient
buoyancy flux suggest a local eddy diffusivity of the order of κ ∼ 10−3m2s−1.

We have previously shown the kinetic energy dissipation averaged over the region over the slope
(figure 15). The spatial distribution of the total kinetic energy dissipation, time averaged over the
period t2 − t1, is shown in figure 17. In all cases dissipation is highest close to the slope in the
frictional bottom boundary layer. There is a band of high dissipation bounded by a line roughly
parallel to the wave characteristic, but slightly narrower at the bottom of the slope in Planar,
and considerably narrower in Highvisc. In Concave the highest dissipation near the slope is not as
marked, and instead there is a broader region of high dissipation at the bottom of the slope (the
subcritical part of the slope). Hydstat has lower magnitude dissipation than the other cases with
the shock-like bores associated with the hydrostatic dynamics responsible for a large fraction of
the total. In general the dissipation distribution differs from the buoyancy flux in that it is less
localized to a particular area of the slope, and it is enhanced right near the boundary, whereas the
buoyancy flux maximum is slightly displaced to the fluid interior, where reductions in stratification
are concentrated.

Laboratory experiments of reflection of an internal wave beam (Ivey et al, 2000) show a mixing
region of depth

h = Kλp = K
2π

√

(k2 + m2)cos(β + θ)
(20)

with dissipation averaged over this layer (assuming all incoming wave energy is dissipated):

ε =
U2

0 ωsin(2(β + θ))

8πKcos2(β)
(21)

where λp is the wavelength of the incoming wave in the direction normal to the slope, and K is
a constant, found empirically to be K ∼ 0.1 − 0.15. β is the angle of the wave characteristic
to the horizontal (s = tan(β)) and θ is the angle of the topography to the horizontal. For our
parameters eq 20 gives a lower limit of h ∼ 40m for the critical planar slope, and eq 21 predicts
ε ∼ 10−8m2s−3 for the critical slope, both of which agree favorably with our simulated dissipation
layer. Note however, that eq 20 does not account for the variation in depth seen both in non-
critical planar slopes, and near-critical concave and convex slopes. Nonetheless, the reasonable
agreement between the laboratory-derived empirical models and the numerical simulations gives
some confidence in these simulations despite their restriction to 2-dimensions.

We can estimate the mixing efficiency, Γ =< w′b′ > /ε, from the time-averaged dissipation
and mixing component of buoyancy flux, averaged over the region over the slope. We find Γ =
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(a) Planar

(b) Concave (c) Convex

(d) Highvisc (e) Hydstat

(f) Subcrit (g) Supercrit

Figure 16: Snapshots of buoyancy flux < w′b′ > deduced from the net change in buoyancy over 5
tidal periods. The contour spacing is 5×10−10m2s−3, and dashed contours indicate negative values.
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Figure 17: Snapshots of net kinetic energy dissipation averaged over 5 tidal periods for (a) Planar,
(b) Concave, (c) Convex, (d) Highvisc, (e) Hydstat, (f) Subcrit, (g) Supercrit. The color scale is
logarithmic and extends from 10−11 → 10−6.5m2s−3.
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0.02 (Hydstat and Highvisc) → 0.095 (Concave). Convex and Planar have similar Γ, 0.053 and
0.057 respectively, as do Subcrit and Supercrit. Overall these are considerably smaller than values
quoted by other authors (e.g. 30%, Slinn and Riley, 1996), perhaps because our calculations are
2-dimensional rather than 3-dimensional. Furthermore our dissipation Reynolds number Re =
ε/(νN2) is relatively small O(1-10) for the low viscosity calculations, so that we fall just at the
edge of the stratified turbulence regime. (Highvisc and Hydstat of course have still lower Re, and
hence are not turbulent). Often mixing efficiencies of 0.2 are assumed (for example in calculating
diffusivities using the Osborn (1980) model), but this only applies to highly turbulent, large Re
regimes (Itsweire et al, 1986).

3.4 Relative importance of shoaling compared to critical reflection

Throughout this analysis we have focused on the reflection of the incoming internal wave from a
slope near the critical angle as a cause of the wave breaking and mixing. However, in our simulations,
there is a second important process - the shoaling of the wave due to the large decrease in total
depth of the fluid. The probable importance of shoaling increases as ∆h/H → 1 where ∆h is the
total change in topographic height, and H is the total depth. In the simulations discussed thus far,
∆h/H = 0.8. Even for a slope that is far from critical, the energy density in a shoaling wave would
be expected to increase significantly, and perhaps lead to mixing. To ascertain whether shoaling
is indeed the dominant process, we have performed two simulations of internal wave breaking in a
fluid of depth H = 2000m, with ∆h/H = 0.08, where shoaling would not be expected to play an
important role. The wavelength and frequency of the incoming wave, slope gradient, stratification
and horizontal resolution are kept as before. The vertical resolution is unchanged in the bottom
200m (near the topography), and coarser above. One simulation has planar slope (DeepPlanar) and
the other slope has concave slope (DeepConcave).

Figure (18) shows snapshots of the cross-slope velocity and buoyancy for the two instants shown
in figures (2) and (3). In figure (18a) the total depth of the fluid is shown for DeepPlanar, while the
other snapshots show only the bottom 200m near the slope. At t = 5.39T , both DeepPlanar and
DeepConcave look very similar to their shallow counterparts, with bores on the lower half of the
slope, accompanied by overturning. At t = 5.94T there are some differences, when the bore reaches
the top of the slope, principally the absence of the reverse front seen above the rear of the bore
in the shallow calculations. Hence we conclude that shoaling is responsible for the depression of
isopycnals following the bore, but not for the initial bore formation and mixing. The stratification
changes in the deep calculations are very similar to those seen in the shallow calculations, and hence
are not shown here. These deep calculations reinforce our interpretation of the wave breaking and
mixing as being caused by the wave reflection from the slope.

4 Discussion: Reflection of finite amplitude waves

Our calculations have demonstrated that the qualitative features of the flow such as the upslope
propagating bores, and the quantitative measures of mixing such as the buoyancy flux show little
sensitivity to the shape of the slope. In contrast, Gilbert and Garrett (1989) predicted that at a
locally concave critical point, energy density was likely to be less than at a locally convex criti-
cal point, and hence we might expect less mixing at the concave slope. One important difference
between our calculations and the study of Gilbert and Garrett (1989) is that our calculations are
highly nonlinear. We propose that the cancellation between up- and downslope-reflected waves pre-
dicted by Gilbert and Garrett (1989) does not occur because the reflection process is not symmetric
about the critical point. This hypothesis is suggested by the comparison between the reflection at
subcritical and supercritical planar slopes; in both cases, an upslope propagating bore is generated,
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(a) DeepPlanar, t = 5.39T
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Figure 18: Snapshots of cross-slope velocity (color) and buoyancy, for calculations of waves encoun-
tering a slope of height 160m in a fluid of total depth 2000m. The color scale extends between
U = −0.05m.s (blue) → U = 0.05m/s (red) and the contour interval is ∆b = 9.81 × 10−5m/s2 in
(a) and 9.81 × 10−6m/s2, in (b),(c),(d),(e).
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for finite amplitude incoming waves. Previous analytic studies suggest that for finite amplitude
internal waves, a thermal front is created which propagates up the slope with the reflected wave
phase velocity (Thorpe, 1992). When the advective velocity exceeds the phase velocity, we would
expect this thermal front to develop into a bore: a bore is an inherently nonlinear feature, typically
with Froude number Fr > 1. We therefore expect bores to form during reflection if the Froude
number of the reflected wave is greater than 1.

The horizontal phase velocity of an internal wave is

(cp)h =
ω

k
(22)

For specular reflection the horizontal wavenumber of the reflected wave (Phillips 1977) is given
by

kR = kI
sin(β + θ)

sin(|β − θ)|
(23)

where θ is the angle of the topography to the horizontal, and β is the angle of the wave characteristic
to the horizontal (tan(β) = s). The phase velocity is therefore slowed down on reflection (for
0 < |β − θ| < π/2),

(cp)R =
ω

kI

sin(|β − θ|)

sin(β + θ)
(24)

From Phillips (1977) the velocity amplitude is increased upon reflection,

(U0)R = (U0)I
sin(β + θ)

sin(|β − θ|)
. (25)

The Froude number of the reflected wave is therefore increased,

FrR =
(U0)R

(cp)R

=
(U0)I

(cp)I

(

sin(β + θ)

sin(|β − θ|)

)2

. (26)

We expect bores to be generated when Fr > 1, so we can determine a range of topographic angles
θC1 < θ < θC2 for which bores will be generated, where θC1 is subcritical and θC2 is supercritical,
given a particular amplitude and wavenumber of the incoming wave,

tan(θC1) = s
Fr

−1/2

I − 1

Fr
−1/2

I + 1
; tan(θC2) = s

Fr
−1/2

I + 1

Fr
−1/2

I − 1
(27)

where FrI = (U0)I/(cp)I , the Froude number of the incoming wave. For our particular parameters
(cp)I = 8.88 × 10−2m/s, and (U0)I = 0.024m/s, giving FrI = 0.27. Since s = 0.101 we have
tan(θC1) = 0.015 and tan(θC2) = 0.319. Note that Subcrit and Supercrit fall well within these
boundaries, and over most of the slope, Convex and Concave also have slopes within this range.
The steepest slope in both Convex and Concave is dh/dx = 0.47 which is just outside this range,
and from the numerical computations it appears that bores are indeed inhibited on the steepest
parts of the slope.

Our calculations therefore suggest that mixing occurs for all shapes of slope which have slopes
within the range likely to lead to FrR > 1. No cancellation between waves reflected from above and
below the critical point occurs for the concave slope because upon reflection density anomalies are
advected up the slope as a bore, not propagated as a wave. Cancellation of reflected waves around
a concave critical point might occur if the critical point were more of a corner, between a shallow
lower slope (θ < θC1), and a steep upper slope (θ > θC2).
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5 Conclusions

We have described a series of calculations of internal waves reflecting from a continental slope,
with a variety of topographic slopes and shapes. In all cases we have found mixing associated with
bores moving upslope followed by strongly sheared downflows. The mixing erodes stratification in
a broad band above the slope, bounded by a region of increased stratification aligned with the wave
characteristic slope. This mixing region can be associated with the region affected by the waves
reflected from the slope. Eventually a quasi-steady state is reached, in which no further erosion of
stratification occurs, with no further deepening of the partially mixed layer. It is important to note
that our calculations are 2-dimensional. In 3-dimensions the mixing processes themselves might be
modified, and lateral transfer processes such as baroclinic instability might restratify the slope region
(as in localized convection regions, Visbeck et al, 1996). Without an understanding of the efficiency
of restratification processes, we cannot give an estimate of the time-averaged diffusivity resulting
from the wave reflection and breaking process. Future work will also be necessary to determine the
dependence on λx/Lh, the ratio of incoming horizontal wavelength to slope lengthscale, which has
been held fixed in this study. The mixing may also be influenced by pre-existing frictional bottom
boundary layers, and background flows, not considered here.

We propose that the presence of mixing for all slope topographies, in contrast to earlier predic-
tions of reduced mixing at concave slopes is a result of the nonlinearity of the reflected wave, which
leads to the bore features, preventing a cancellation of waves reflected from above and below the
critical point. Predictions of reflected wave Froude number seem to support this hypothesis. For
any amplitude of incident wave, there will always be some range of slope angles around the critical
angle with reflected Froude number Fr > 1. An important question is whether for typical ocean
parameters, the range θC1 → θC2 is a large one. If we consider the internal tides generated at the
MidAtlantic Ridge, St Laurent and Garrett (2002) predict a first mode internal tide with amplitude
U0 = 0.0018m/s. Using an average N = 10−3s−1 (same as the N used in our calculations) and
depth H = 4000m, then from equation 22 the Froude number of the first mode internal tide is
FrI = 0.001. Then from eq 27 the range of slopes for which FrR > 1 is 0.094 < dh/dx < 0.108,
rather small. Even for an internal wave amplitude an order of magnitude larger, U0 = 0.02m/s,
FrI = 0.011, and FrR > 1 when 0.08 < dh/dx < 0.125. The calculations described in this paper
have a wider range of slopes leading to FrR > 1 due to a larger FrI, which in turn results from the
smaller depth (200m instead of 4000m) (hence larger m and smaller cp). As stressed earlier, these
results apply for internal waves at other frequencies too, and so it may be possible for the internal
wave continuum to make as significant a contribution to the total mixing as the tidal band internal
waves.

If our 200m deep scenario had stratification more typical of the shallow coastal regions, where
N ∼ 15 × 10−3s−1 (e.g. Nash and Moum, 2001), then s would be reduced, as would Fr for a 1st
mode wave of the same velocity amplitude (FrI = U0πs/H). Hence the range of angles over which
mixing might occur would also be less than seen in our simulations. However, coastal regions may
also have greater wave velocities, thereby increasing FrI . To obtain mixing over a similar range of
slopes as in these simulations, forcing would have to be U0 > 1m/s for this stronger stratification.

The study of internal wave breaking at topography is motivated by the desire to develop phys-
ically based parameterizations of tidal mixing. This study suggests that this particular aspect of
tidal mixing could be parameterized by applying an enhanced diffusivity in a band above the slope
whenever the slope angle falls within the range θC1 < θ < θC2, with the upper bound of the en-
hanced diffusivity coinciding with the wave characteristic. The Garrett-Munk spectrum could be
used to prescribe the wave amplitude as a function of frequency and wavenumber, necessary to
determine θC1 and θC2.
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